Generalization and new proof for almost everywhere convergence to imply local convergence in measure

نویسندگان

چکیده

With a new proof approach we prove in more general setting the classical convergence theorem that almost everywhere of measurable functions on finite measure space implies measure. Specifically, generalize for case where codomain is separable metric and limiting map constant an arbitrary topological space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Everywhere Convergence of Series in L

We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.

متن کامل

On radial Fourier multipliers and almost everywhere convergence

We study a.e. convergence on L, and Lorentz spaces L, p > 2d d−1 , for variants of Riesz means at the critical index d( 1 2 − 1 p )− 1 2 . We derive more general results for (quasi-)radial Fourier multipliers and associated maximal functions, acting on L spaces with power weights, and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformation...

متن کامل

Mean and Almost Everywhere Convergence of Fourier-neumann Series

Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...

متن کامل

Almost Everywhere Convergence in Family of IF-events With Product

The aim of this paper is to define the lower and upper limits on the family of IF-events with product. We compare two concepts of almost everywhere convergence and we show that they are equivalent, too.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Interdisciplinary Mathematics

سال: 2021

ISSN: ['2169-012X', '0972-0502']

DOI: https://doi.org/10.1080/09720502.2020.1866317